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ABSTRACT 
The way in which we represent physical objects in the computer greatly 
affects our ability to manipulate and reason about them. We are 
concerned with developing computer tools for conceptual design, and 
seek representations which are appropriate for both CAD and finite 
element calculations. Here, we highlight the use of superquadric 
Junctions for representing object surfaces and volumes. Using this 
representation bodies can be created as generic 'blobs' and then molded, 
rather like clay, to the required shape using easily controlled parameters. 
These Junctions have attractive properties, including being able to 
represent angular bodies, such as cubes, with a smooth continuously 
differentiable surface. It is demonstrated that superquadrics can also be 
used to generate potential surfaces for plasticity. These do not have the 
traditional 'corner problems' for surfaces, such as Tresca. 
Superquadrics can also be combined with finite element representations 
to provide an efficient analysis scheme for calculating the dynamics of 
multi-body systems. 

1     DESIGN TOOLS 
There is a growing belief in the U.S. that the present design process 
must be significantly improved. In particular, we must reason about 
issues, such as manufacturing and maintenance, during the early design 
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E15-410, MIT 
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by a grant from Nippon Telephone and Telegraph. 



stage; an approach which has been called 'Concurrent Design' [1]. 

'Concurrent Design is a systematic approach to the integrated, 
concurrent design of products and their related processes, including 
manufacture and support. This approach is intended to cause 
developers, from the outset, to consider all elements of the product life 
cycle from conception through disposal, including quality, cost, and user 
requirements'. 

Here we discuss the use of interactive simulation of multi-body 
dynamics for 'Virtual Manufacturing' - the simulation of the 
manufacturing process in the computer during the early stages of 
design. In contrast to present CAD and finite element analysis tools, 
which deal with design detailing and with the optimization of the 
design after the major design decisions have been made, conceptual 
design deals with an ill defined product, and must provide guidance for 
selecting between radically different concepts. The system we envisage 
provides visual feedback to the designer on product manufacturing 
processes and on performance during testing. 

If computer tools are to replace pencil, paper and calculator, we need 
to be able to interact with them with similar ease. The 
human-machine interface problem in design is the topic of our ongoing 
research and is discussed in other papers [2,3]. Here we concentrate on 
the problem of analyzing and reasoning about spatial relationships of 
multi-body systems, including contact and interference. In common 
with previous attempts at achieving this goal, we have been confronted 
with the problem that, the computational expense of calculating 
dynamic interactions, prevents interactive simulations for all but 
relatively small problems. We believe that fundamental changes in the 
way we represent objects may lead to improvements in this area. 

1.1 Simulation 
Since virtual manufacturing requires that we reason about the 
effectiveness of the design from the very start of the project, we must 
have numerical analysis tools integrated into our design system. The 
computer simulation of the multi-body dynamics of deformable objects 
has long been a major goal of researchers in computational mechanics 
[4,5,6] and computer graphics [7,8,9]. In computational mechanics the 
emphasis has been on the detailed analysis of relatively few (typically 
two) impacting bodies, where the need for accuracy has been of 
paramount importance. The emphasis in computer graphics, in 
projects such as Sketchpad [7] and Thinglab [8], has been on producing 
realistic animation of colliding objects. 

In Discrete Element [10,11] problems with large numbers of bodies, as 
much as 80% of the computational time is spent in detecting and 
tracking the contacts between bodies. The problem is especially severe 
because the algorithm is of order O(nm) operations, where n is the 
number of polygons and m is the number of points to be checked for 
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interference. Some finite element implementations [12] avoid 
automated checking by having the user input contacting surfaces but 
this is only possible when these surfaces can be predicted a priori Here 
we consider the general problem of reasoning about spatial 
relationships, including contact detection, when they must be resolved 
by the computer program.surfaces. The method we present uses a 
hybrid approach in which the geometry of the object is represented by 
superquadric functions while for the stress calculations the 
displacements are interpolated using standard parabolic shape 
functions. 

The use of different representations for surface and internal geometry 
focuses our attention on a field of increasing importance - object 
representation. In the following sections we discuss how we have been 
able to take advantage of volumetric object representation based on 
superquadric functions by combining it with a reduced basis modal 
approach for calculating object deformations. Examples of the use of 
this approach for design are presented in the context of a prototype 
program called Thingworld [13]. 

2 SUPERQUADRJCS AND HYPERQUADRICS 
2.1 Superquadrics 

Superquadrics and hyperquadrics [14,15,16] are examples of 
representations where a single analytic expression defines the complete 
bounding surface of an object. The general equation of a three 
dimensional superquadric is given by: 

+ I 
€2 

+ 
C3 

=     1 Eqn. 1 

where a,b and c, determine the lengths of the prinicple axes and eue2 
and e3 are powers, such that 0 < e < ». 

The properties of the superellipse or superquadric equation were first 
investigated by the Danish designer Peit Hein [17]. When e = 2 we 
recover the equation of an ellipsoid. By varying a,b and c we can 
stretch the body continuously in any direction. By varying e from 
infinity to zero we obtain the curves shown in Figure 1. 

a =o.i a «1 a=i-9 

/?=o.i 

/?=i 

Figure 1     Superquadric Functions For Various Parameter Values. 



A particularly useful facet of volumetric expressions is the so called 
'insideHDutside' property. To determine if the point (x ,y ) is inside or 
outside the body we substitute the point into the function below 

F(x,y,z) 
Cl 

+ f 
f2 

+ 
f3 

Eqn2 

Now if F, is greater than zero the point is outside the body, if F is 
equal to zero the point is on the surface, and if F is less than zero the 
point is inside the body. Furthermore, we note that for e = 2 |F| is 
the square of the distance of the point from the surface. In general 
Equation 2 provides a non-Riemann measure of the distance of the 
point (x,y,z) from the surface of the superquadratic, F(x,y,z) = 0 
For a = ß = 2/n, F(x,y,z) gives the Ln distance metric. Thus, the 
superquadnc can be viewed as specifying a family of potential surfaces 
throughout space, one of which represents the object surface. 

The modulated superquadric equation can be written as, 

2//? 2/ß ß/a 

+ + 
2/a 

1 Eqn. 3 

The superquadric family can also be represented parametrically by 
latitude and longitude parameters as: 

R(T?,ü;) 

asign(cos ipcos 0) \cos^(<p) cosa(0)| 
bsign(cos ipsin 6) |cos^(v?) sina(0)| 
csign(sinp) |sin^(p)| Eqn 4 

Where R is a three dimensional vector containing the x y z 
components of the surface point. The normal to the surface at point 
{<p,0) is given by: 

N(M = 
l/asign(cos <pcos 0)\cos2~^((p) cos2~a(6)\ 
l/bsign(cos psin ^)|cos2~^(^) sin2_a(ö)j 
1/c sign(sin ip) |sin2-^(^)| 

The superquadnc has been exploited in shape recovery from digital 
images by Solina [18], who uses the following modified 'inside- outside' 
function to implement a least squares approach. 

F(x,y,z) = 
2/0 2/ß ß/a 

[I]    +W     ]       + 
2/a   a 

This modified function gives a more consistent quadratic distance 
measure to points deviating from the superquadric surface. 



The mside-outside function defines the superquadric surface in a bodv 
centered co-ordinate system. To locate the body at an arbitrary 
position in global co-ordinates, points are transformed using a 
homogeneous co-ordinate transformation T, where T is of the form- 

[T]  = 
nx mx lx dx 
ny my ly dy 
nz mz 1 z dz 

L0   0   0   1 
and n,m 1 are the direction cosines of the local body axes with respect 
to the global axes, and d, is the translation vector to the local bodv 
axes origin. ' 

Thus, 

.Tr 
[T]{xiocal} = World} 

where {x}ir = {x,y,z,l}. 

Deformations, not directly controlled by superquadric parameters, can 
be imposed by using Jacobians to deform physical space, eg 

{**} = 
1 0 k 0 
0 1 k 0 
0 0 10 
0 0 0  1 

M 

defines a form tapered along the z axis. The corresponding 
transformation for the surface normal (which transforms as a covariant 
tensor, as opposed to a contravariant tensor) is given by: 

N  = l/(det J)*(J_1)T N 

where J is the Jacobian of the deformation mapping. 

2.2 Hyperquadrics 

By analogy with Equation 1, we can expand the family of 
superquadncs to higher numbers of dimensions, so called 
hyperquadrics. We note the equation may be written for four 
dimensions as: 

F(x,y,z,w) = 
ci 

+ 
f2 C3 

+ W 

d" 
C4 

-1 

and for n dimensions as: 

L |Bi(x)|f*=l 

Eqn5 

Eqn6 

where Bt(x) =   £» a^.x  + e,   where Xl = x, x2 = y, etc. and e is 
included to be completely general. 



Hanson [16] has shown that this proceedure allows us to design 
hypercubes, and to intersect them with lower dimensional hyperplanes 
to generate complicated three dimensional objects. Here we shall only 
concern ourselves with four dimensional hypercubes cut by three 
dimensional hyperplanes, to give us three dimensional volumes 
Because visualizing four dimensions is difficult we proceed by first 
examining the problem in one dimension less, ie. three dimensional 
superquadncs cut by two dimensional planes. 

Consider the intersection of a plane with a superquadric cube, as 
illustrated m Figure 2. The equation of the three dimensional unit 
cube is given by: 

, ., ..   Jf       |X|£+|YIC+|Z|C=1   Eqn.7 
where capitalized letters indicate global coordinates. 

Figure 2     Intersection of Plane Through Cube 

Let the cube be cut by a plane whose surface normal is n, so that its 
equation is: 

T 
T 

where n = {m n2, n3}. To find the equation of the intersecting 
surface, we transform global coordinates X, to a new local basis x, such 
tnat the orthonormal vectors of x, call them a and b, He in the 
intersecting plane ie n.a = n.b = 0. The unit vectors a and b, can 
easily be found as follows: 

Take any vector c, not parallel to n, and form a = n x c. Now take 
,7 a *,? and normalize both a and b.   In terms of the new axes the 

old coordinates are given by: 

or{x} = [S]{X} 

Since a.a = b.b = n.n = 1 and a.b = a.n = b.n = 0 and [S]"1 = [S]T it 
1UJJ.UWS  bXlctt • 

X ai a2 a3" rxi 
y bi b2 b3 Y 

LdJ ni n2 n3 [z J 

rxi aj bi n{ x' 
Y a2 b2 n2 y 

CS
l 

a3 b3 n3 LdJ Eqn8 



Substituting this into Equation 4 gives the hyperquadric equation in 
terms of the new orthonormal coordinates. 

3 ,.        3 

X. |Bi(*)| ^^Jaix + biy + nidl6^!   Eqn. 9; 

The parameter d specifies the distance from the origin to the plane of 
intersection. By varying d, we can cut the cube to form the shapes 
Shown in Fi^nrp 3 * shown in Figure 3. 
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Figure 3     Curves Formed By Intersecting Cube With a Plane 

If we parameterize Equation 9 in terms of 9 and <p, so that: 

K(0) = r(0) cos(0) cos(<p), 
K0) = r(0)sinMcosW, 

d = sin(p); 

we can solve numerically for r(0), using a search technique, such as 
Newton-Raphson. We note that the asymptotic bounds on the allowed 
shapes are given by letting e - -. Any value of Bi less than 1, tends to 
zero, because it is raised to a high power, leaving only points on the 
lines defined by each separate term Bi, given below: 

ajx + biy + nid = ±1 ; 

By choosing bounding surfaces directly and creatoing an equation of 
the form of Equation 5, we can design surfaces which tend to various 
polygonal shapes. 

2.3 Higher Dimensions 

The equation of the unit hypercube in four dimensions is given by: 

IJXi|f*=l; 

The intersection of a hyperplane with normal n, with the hypercube is 
given by 

4 

IJaix + biy + Ciz + nid|ei= 1 ; 
where a.b = a.c = a.d = b.c = b.d = cd = 0. Calculating a 4-vector 
orthogonal to three other 4-vectors, say a, b, n is accomplished by 
choosing the coefficients A, B, C, D as the co-factors of i, j, k, and 1 in 
the determinant below; 



i   j  k  1 
&1 &2 &3 &4 
bi b2 b3 b4 
111 Ü2 Ü3 Ü4 

= Ai + Bj + Ck + Dl 

where 1 is the unit vector in the 4th dimesnion. 

In analogy with Equation 8 this gives the required transformation from 
global to local coordinates oriented normal to, and in, the hyperplane: 

X ai a.2 ä3 a4 X 
y bi b2 b3 b4 Y 
z Ci C2 C3 C4 Z 
dj ni n2 n3 n4 D 

The corresponding parametric equations are: 

x(6,i>) = r(6,ip) cos(6) cosiip) cos(tp), 
y(6,ip) = T{6,ip) sin(0) cos(^) cos(v?), 

z(0,i>) = i(6,i>) sin(tp) cos(<p) 
d = sin(p) ; 

Figure 4 shows a number of three dimensional shapes formed by 
intersecting a hyperquadric with a hyperplane. 

[ii] HyperQuad  Window i§§ 

(SH HyperQuad  Window sa 
- 

YrSk       jm^^sj^ 

Figure 4     Hyperquadric Surfaces Formed By Varying Distance From 
Origin of Hyperplane 



For plasticity calculations the normal to the surface is required.   This 
is just the gradient of the equation at the given point, given by: 

na x + d 
1    ij  j i 

where Bi(x) = Y 

2.4 Application To Plastic Potentials 
Many of the surfaces traditionally used in plasticity, such as Tresca, 
have non unique normals at their corners. We show here how to design 
surfaces to match these plastic potentials, which have unique normals 
at all points. Furthermore these surfaces are easily expanded to follow 
hardening and other material behavior. 

Consider the boundary of the 'square' superquadric 

We+|y|c = i 

where £ is large. Let us add another term 
|x+y|e+|x|e+|y|c = l 

The figure is now bounded by the following lines: 

x+y = + 1 ,    x = + 1,    y = + 1 ; 
We note that whenever one of the terms has a value < 1 then its 
contribution becomes negligible, because it is raised to a large power. 
Thus by choosing the terms corresponding to Bi(x), we can easily 
control the shape of the bounding surface.   To generate an hexagonal 
boundary for, say Tresca, we choose 

+0.707 x - 0.408 y + 0.577 = ± 1 , 
-0.707 x - 0.408 y + 0.577 = ± 1 , 

0.816y + 0.577 = - 1; 

Figure 5     Surfaces For Plastic Potentials Formed From Superquads 



If we wish to extrude this surface in three dimension we can add 
another term in the z direction. Figure 5 shows a number of surfaces 
generated using both superquadric and hyperquadric functions. Note 
that all the surfaces are actually smooth functions, with unique, well 
defined, normals everywhere, even though they are drawn as having 
sharp angles. 

2.5 Contact Detection 
The role of contact detection in multi-body dynamics is to determine 
the area of contact and the associated interaction forces between the 
bodies. There are two main methods of enforcing contact conditions, 
namely via a Lagrangian multiplier [18] or via a Penalty Function 
[19,20] formulation. Both methods essentially calculate a contact force 
(stress) which varies at each time step and depends on the relative 
geometries of the bodies. We show here how the 'inside-outside' 
functions enables efficient contact algorithms. 

For rendering, and hidden line and surface calculations it is necessary 
to generate a set of points covering the surface of the superquadric. 
This is most easily achieved by using the parametric form of Equation 
4 so that points are generated along lines of constant latitude and 
longitude. To check if a given object is in contact with any other, we 
first perform a bounding box check, which usually eliminates the 
majority of candidates for contact. We now loop over the points on 
our given object's surface and conduct an 'inside-outside' check with 
the superquadric function of the remaining objects. When we find a 
point inside another object, we intelligently search surrounding points 
until one outside is found. If necessary the intersection point, which 
lies between the inside and outside point, can be found by a search 
scheme, such as a binary search. Depending on the amount of effort we 
wish to expend we can now employ various methods of determining the 
area of contact. We are presently experimenting with both point 
contact and a method based on an average radius of curvature for the 
penetrating cap. The latter method is quite accurate when the local 
curvature is approximately constant. 

3    MODAL DYNAMICS 
The element dynamics in Thingworld are based on the eigenmodes of 
each body, as calculated using a parablolic interpolation. The 
parabolic element is determined by 20 points taken on the surface of 
the superquadric. These points link together the two representation, 
keeping them 'in-step'. 

Two examples of analyses using the Thingworld system based on 
superquadrics are shown in Figures 6 and 7. The first analysis shows 
the dynamic impact of a ball on a two by four piece of wood. 
Constant, linear and quadratic strain modes were analyzed, allowing 
rapid calculation of the response. On a 1 Mip Symbolics machine each 
intersection calcultion took only 0.05 sees allowing the whole analysis 
to be completed (excluding rendering) in approximately real time. 



Figure 7 shows a design analysis of a chair. We start with the seat 
which we mold to shape. Taking a similar piece we form the back. 
Adding tubes for legs and arms we assemble our chair in Thingworld in 
approximately 5 mins. Defining constraints to fix arms and legs in 
place takes another minute and then defining boundary conditions and 
loads another minute. Here we choose to have a person (from our 
library of parts) lie on the chair to test its strength and stability. This 
model took only 180 parameters to define, illustrating the compact 
representations available using superquadrics. 

Figure 6     Dynamic Modal Analysis of a Deformable Ball Hitting a 
Two By Four 

Figure 7     Design   of  A   Chair   Using   Superquadric   Functions   to 
Represent Objects 
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